Genetics-based machine learning for the assessment of certain neuromuscular disorders
نویسندگان
چکیده
Clinical electromyography (EMG) provides useful information for the diagnosis of neuromuscular disorders. The utility of artificial neural networks (ANN's) in classifying EMG data trained with backpropagation or Rohonen's self-organizing feature maps algorithm has recently been demonstrated. The objective of this study is to investigate how genetics-based machine learning (GBML) can be applied for diagnosing certain neuromuscular disorders based on EMG data. The effect of GBML control parameters on diagnostic performance is also examined. A hybrid diagnostic system is introduced that combines both neural network and GBML models. Such a hybrid system provides the end-user with a robust and reliable system, as its diagnostic performance relies on more than one learning principle. GBML models demonstrated similar performance to neural-network models, but with less computation. The diagnostic performance of neural network and GBML models is enhanced by the hybrid system.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملIdentification Psychological Disorders Based on Data in Virtual Environments Using Machine Learning
Introduction: Psychological disorders is one of the most problematic and important issue in today's society. Early prognosis of these disorders matters because receiving professional help at the appropriate time could improve the quality of life of these patients. Recently, researches use social media as a form of new tools in identifying psychological disorder. It seems that through the use of...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملAssessment of the Efficiency of Climatic factors and geomorphometry in predicting vegetation percentages based on machine learning processes
Introduction: Rangelands are natural ecosystems having large genetic resources. Since plant vegetation is the bed of life on earth and changes under the influence of surrounding environmental elements, using environmental element can highly contribute to estimate vegetation percent more accurately. Two effective elements which can contribute to estimate the vegetation distribution are climatic ...
متن کاملExplain the theoretical and practical model of automatic facade design intelligence in the process of implementing the rules and regulations of facade design and drawing
Artificial intelligence has been trying for decades to create systems with human capabilities, including human-like learning; Therefore, the purpose of this study is to discover how to use this field in the process of learning facade design, specifically learning the rules and standards and national regulations related to the design of facades of residential buildings by machine with a machine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 7 2 شماره
صفحات -
تاریخ انتشار 1996